(1)氯氣凈化。以前采用活性氣體氯氣作凈化劑(氯化法)。在氯化法中,把氯氣通入鋁液內時生成很多異常細小的AlCl3,氣泡,充分地混合在鋁液內。溶解在鋁液中的氫,以及一些機械夾雜物便吸附在AlCl3氣泡上,隨著AlCl3氣泡上升到鋁液表面而排出。通入氯氣時還能使某些比鋁更加負電性的元素氯化,如鈣、鈉、鎂等均因通入氯氣而生成相應的氯化物,得以分離出來。所以氯化法是一種非常有效的原鋁凈化法。氯氣用量為每噸鋁500-700g。但因為氧氣有毒而且比較貴重,為了避免空氣被污染和降低鋁錠生產的成本,故在現代鋁工業上已逐漸廢去了氯化法改成惰性氣體--氮氣凈化法。
(2)氮氣凈化法。又稱為無煙連續凈化法,用氧化鋁球(418mm)作過濾介質。N2直接通入鋁液內。鋁液連續送入凈化爐內,通過氧化鋁球過濾層,并受到氮氣的沖洗,于是鋁液中的非金屬夾雜物以及溶解的氫得以清除,然后連續排出,從而使細微的氮氣泡均勻分布在受處理的鋁液內起到凈化的作用。氮氣對大氣無污染,且凈化處理量大,每分鐘可處理200~600kg鋁液,凈化過程中造成的鋁損失量相對減少,故現在廣泛應用。但它不象氯氣那樣能夠清除鋁液中的鈣、鈉、鎂。
(3)混合氣體凈化法。采用氯氣和氮氣的混合物來凈化鋁液,其作用是一方面脫去氫氣和分離氧化物,另一方面清除鋁中某些金屬雜質(如鎂),常用的組成是90%氮氣+10%氯氣。也有采用10%氯氣+10%二氧化碳+80%氮氣。這樣效果更好,二氧化碳能使氯氣與氮氣很好的擴散,可縮短操作時間。
三、鑄錠工藝
現在鋁錠鑄造工藝一般采用澆鑄工藝,就是把鋁液直接澆到模子里,待其冷卻后取出。
產品質量的好壞主要在這一步驟,而且整個鑄造工藝,也是以這一過程為主。鑄造過程是一個由液態鋁冷卻、結晶成為固體鋁錠的物理過程。
1.連續澆鑄
連續澆鑄可分為混合爐澆鑄和外鑄兩種方式。均使用連續鑄造機。混合爐澆鑄是將鋁液裝入混合爐后,由混合爐進行澆鑄,主要用于生產重熔用鋁錠和鑄造合金。外鑄是由抬包直接向鑄造機澆鑄,主要是在鑄造設備不能滿足生產,或來料質量太差不能直接入爐的情況下使用。由于無外加熱源,所以要求抬包具有一定的溫度,一般夏季在690~740℃,冬季在700~760℃,以保證鋁錠獲得較好的外觀。
混合爐澆鑄,首先要經過配料,然后倒人混合爐中,攪拌均勻,再加入熔劑進行精煉。澆鑄合金錠必須澄清30min以上,澄清后扒渣即可澆鑄。澆鑄時,混合爐的爐眼對準鑄造機的第二、第三個鑄模,這樣可保證液流發生變化和換模時有一定的機動性。爐眼和鑄造機用流槽聯接,流槽短一些較好,這樣可以減少鋁的氧化,避免造成渦旋和飛濺,鑄造機停用48h以上時,重新啟動前,要將鑄模預熱4h。鋁液經流槽流入鑄模中,用鐵鏟將鋁液表面的氧化膜除去,稱為扒渣。流滿一模后,將流槽移向下一個鑄模,鑄造機是連續前進的。鑄模依次前進,鋁液逐漸冷卻,到達鑄造機中部時鋁液已經凝固成鋁錠,由打印機打上熔煉號。當鋁錠到達鑄造機頂端時,已經完全凝固成鋁錠,此時鑄模翻轉,鋁錠脫模而出,落在自動接錠小車上,由堆垛機自動堆垛、打捆即成為成品鋁錠。鑄造機由噴水冷卻,但必須在鑄造機開動轉滿一圈后方可給水。每噸鋁液大約消耗8-10t水,夏季還需附吹風進行表面冷卻。鑄錠屬于平模澆鑄,鋁液的凝固方向是自下而上的,上部中間最后凝固,留下一條溝形縮陷。鋁錠各部位的凝固時間和條件不盡相同,因而其化學成分也將各異,但其整體上是符合標準的。
重熔用鋁錠常見的缺陷有:①氣孔。主要是由于澆鑄溫度過高,鋁液中含氣較多,鋁錠表面氣孔(針孔)多,表面發暗,嚴重時產生熱裂紋。②夾渣。主要是由于一是打渣不凈,造成表面夾渣;二是鋁液溫度過低,造成內部夾渣。③波紋和飛邊。主要是操作不精細,鋁錠做的太大,或者是澆鑄機運行不平穩造成。④裂紋。冷裂紋主要是澆鑄溫度過低,致使鋁錠結晶不致密,造成疏松甚而裂紋。熱裂紋則由澆鑄溫度偏高引起。⑤成分偏析。主要是鑄造合金時攪拌不均勻引起的。
2.豎式半連續鑄造
豎式半連續鑄造主要用于鋁線錠、板錠以及供加工型材用的各種變形合金的生產。鋁液經配料后倒入混合爐,由于電線的特殊要求,鑄造前需加入中間合盤Al-B脫出鋁液中的鈦、釩(線錠);板錠需加入Al-Ti--B合金(Ti5%B1%)進行細化處理。使表面組織細密化。高鎂合金加2#精煉劑,用量5%,攪拌均勻,靜置30min后扒去浮渣,即可澆鑄。澆鑄前先將鑄造機底盤升起,用壓縮空氣吹凈底盤上的水分。再把底盤上升入結晶器內,往結晶器內壁涂抹一層潤滑油,向水套內放些冷卻水,將干燥預熱過的分配盤、自動調節塞和流槽放好,使分配盤每個口位于結晶器的中心。澆鑄開始時,用手壓住自動調節塞,堵住流嘴,切開混合爐爐眼,讓鋁液經流槽流入分配盤,待鋁液在分配盤內達到2/5時,放開自動調節塞,使鋁液流進結晶器中,鋁液即在底盤上冷卻。當鋁液在結晶器內達到30mm高時即可下降底盤,并開始送冷卻水,自動調節塞控制鋁液均衡地流入結晶器中,并保持結晶器內的鋁液高度不變。對鋁液表面的浮渣和氧化膜要及時清除。鋁錠長度約為6m時,堵住爐眼,取走分配盤,待鋁液全部凝固后停止送水,移走水套,用單軌吊車將鑄成的鋁錠取出,在鋸床上按要求的尺寸鋸斷,然后準備下一次澆鑄。
澆鑄時,混合爐中鋁液溫度保持在690~7l0℃,分配盤中的鋁液溫度保持在685-690℃,鑄造速度為190~21Omm/min,冷卻水壓為0.147~0.196MPa。鑄造速度與截面為正方形的線錠成比例關系:
VD=K,式中V為鑄造速度,mm/min或m/h;D為錠截面邊長,mm或m;K為常值,m2/h,一般為1.2~1.5。
豎式半連續鑄造是順序結晶法,鋁液進入鑄孔后,開始在底盤上及結晶器內壁上結晶,由于中心與邊部冷卻條件不同,因此結晶形成中間低、周邊高的形式。底盤以不變速度下降。同時上部不斷注入鋁液,這樣在固體鋁與液體鋁之間有一個半凝固區.由于鋁液在冷凝時要收縮,加上結晶器內壁有一層潤滑油,隨著底盤的下降,凝固的鋁退出結晶器,在結晶器下部還有一圈冷卻水眼,冷卻水可以噴到已脫出的鋁錠表面,為二次冷卻,一直到整根線錠鑄完為止。
順序結晶可以建立比較滿意的凝固條件,對于結晶的粒度、機械性能和電導率都較有利。比種鑄錠其高度方向上沒有機械性能上的差別,偏析也較小,冷卻速度較快,可以獲得很細的結晶組織。
鋁線錠表面應平整光滑,無夾渣、裂紋、氣孔等,表面裂紋長度不大于1.5mm,表面的渣子和棱部皺紋裂痕深度不許超過2mm,斷面不應有裂紋、氣孔和夾渣,小于lmm的夾渣不多于5處。
鋁線錠的缺陷主要有:①裂紋。產生的原因是鋁液溫度過高,速度過快,增加了殘余應力;鋁液中含硅大于0.8%,生成鋁硅同熔體,再生成一定的游離硅,增加了金屬的熱裂性:或冷卻水量不足。在結晶器表面粗糙或沒有使用潤滑油時,錠的表面和角部也會產生裂紋。②夾渣。鋁線錠表面夾渣是由于鋁液波動、鋁液表面的氧化膜破裂、表面的浮渣進入鑄錠的側面造成。有時潤滑油也可帶入一些夾渣。內部夾渣是由于鋁液溫度過低、粘度較大、渣子不能及時浮起或澆鑄時鋁液面頻繁變動造成。③冷隔。形成冷隔主要是由于結晶器內鋁液水平波動過大,澆鑄溫度偏低,鑄錠速度過慢或鑄造機震動、下降不均而引起的④氣孔。這里所說的氣孔是指直徑小于1mm的小氣孔。其產生的原因是澆鑄溫度過高,冷凝過快,使鋁液中所含氣體不能及時逸出,凝固后聚集成小氣泡留在鑄錠中形成氣孔。⑤表面粗糙。由于結晶器內壁不光滑,潤滑效果不好,嚴重時形成晶體表面的鋁瘤。或由于鐵硅比太大,冷卻不均產生的偏析現象。⑥漏鋁和重析。主要是操作問題,嚴重的也造成瘤晶。
3.鑄錠質量的保證
(1)重熔用鋁錠。鑄錠過程中最重要的技術條件是澆鑄溫度,在澆鑄過程中必須嚴格控制澆鑄溫度,一般高于鋁液凝固溫度30~50℃。
(2)線錠。線錠的澆鑄略為復雜,需控制的條件有鑄錠速度。鑄錠速度與鑄錠直徑有關。其澆鑄溫度保持680~690℃,冷卻水壓為0.147~0.196MPa,結晶器內壁鋁液水平控制在30mm左右。控制好以上條件,并加強操作管理,即可獲得較好的質量。
?
冶金鐵路車輛現場事故救援技術研究與…
高溫液態金屬突發事故應急處理措施
鑄造車間通風除塵技術
煉鋼廠煤氣危險源(點)管理控制措施
轉爐冶煉高碳低磷鋼氧槍“氮攪”工藝…
低碳低硅鋼的冶煉實踐研究
冶煉煙氣脫汞技術進展
焊口熱處理安全措施
焊工崗位危險因素、事故防范及事故應…
乙炔氣割槍回火處理措施
焊接作業安全要求
ASM焊線機操作指導書
氬弧焊作業指導書
電烙鐵使用的注意事項
轉爐煤氣回收的安全措施
煉鐵廠冬季“四防”安全生產控制措施